

I-15 CORE Design-Builder Perspective Provo River Constructors (PRC) Proctor Lane

Jeff Dobmeier, P.E.; Structures Designer

Advantages of Design-Build

SPMT projects

- Reduces or eliminates design assumptions
- Improves or permits optimization
- Increases adaptability
- Offers advantages without schedule delays
- Offers an accelerated schedule

Traditional Design-Bid-Build

Traditional design-bid-build presents a very linear process

Design-Build

Design-build presents more opportunities for parallel activities

Proctor Lane Bridge

Increased Adaptability

- Addressing camber variances
 - Geometry; deep haunches
 - Design; approximately 9 inches of build up at midspan
 - Girders; predicted cambers unrealized
 - Haunch depths; in excess of 11.5 inches

Camber Discussion

Movability

Movability

Movability

Camber Discussion

Stress Discussion

Stress Discussion

Stress Discussion

Advantages of Design-Build

Demonstrates adaptability

- Simple modifications yield tremendous dividends
- Structural durability improved
- Schedule flexibility (two spans, one night)

I-15 CORE Design-Builder Perspective Provo River Constructors (PRC) 200 South and Sam White Lane

Richard Hansen, P.E.; Structures Designer

200 South and Sam White Lane

- Designer perspective
 - You want to move what?

– Where?

Bridge Comparison

	200 South	Sam White Lane
Out-to-Out Length	325'-0"	354'-0"
Span Lengths	(2) 162.5'-0" spans	(2) 177'-0" spans
Deck Width	68'-10"	76'-10"
Superstructure Depth	5′-7″	7′-1″
Number of Girders	6 girders	6 girders
Girder Spacing	12′-6″	13'-6"
Superstructure Weight	3,300,000 lbs	4,200,000 lbs

Design Considerations

- Superstructure weight
- SPMT limits/grading
- Geometry
- Temporary supports
- Flexibility in design
- Structural modeling/tolerances/monitoring

Superstructure Weight

- Utilize light-weight concrete (120 pcf)
- Place sidewalk after bridge move
- Minimize seismic forces and displacements
- Minimize number of SPMTs

SPMT Limits/Grading

- Bridge weight
- SPMT Limits
 - 11 k/wheel
 - 22 k/axle
 - 44 k/axle line

- Stroke limits (20 inches)
- Grading
 - Use of SPMTs (feasibility)
 - Match relative elevations

Geometry

Abutment 1 (West Abutment) – Looking West

Abutment 3 (East Abutment) – Looking West

Geometry

Superimposed Abutments – Looking West

Geometry

Bent – Looking West

Temporary Supports

- Significant coordination needed
- Temporary support design considerations (piles vs. spread footings)

Flexibility in Design

- Incorrect flange plate ordered
- Cross frame fit
- Traffic control
- Travel paths
- Schedule

Structural Modeling/Tolerances

- Stroke required to lift
- Deck and parapet stress
- Allowable twist/deflections
- Placement tolerances

